A revisit to block and recursive least squares for parameter estimation

نویسندگان

  • Jin Jiang
  • Youmin Zhang
چکیده

In this paper, the classical least squares (LS) and recursive least squares (RLS) for parameter estimation have been re-examined in the light of the present day computing capabilities. It has been demonstrated that for linear time-invariant systems, the performance of blockwise least squares (BLS) is always superior to that of RLS. In the context of parameter estimation for dynamic systems, the current computational capability of personal computers are more than adequate for BLS. However, for timevarying systems with abrupt parameter changes, standard blockwise LS may no longer be suitable due to its inefficiency in discarding ‘‘old’’ data. To deal with this limitation, a novel sliding window blockwise least squares approach with automatically adjustable window length triggered by a change detection scheme is proposed. Two types of sliding windows, rectangular and exponential, have been investigated. The performance of the proposed algorithm has been illustrated by comparing with the standard RLS and an exponentially weighted RLS (EWRLS) using two examples. The simulation results have conclusively shown that: (1) BLS has better performance than RLS; (2) the proposed variablelength sliding window blockwise least squares (VLSWBLS) algorithm can outperform RLS with forgetting factors; (3) the scheme has both good tracking ability for abrupt parameter changes and can ensure the high accuracy of parameter estimate at the steady-state; and (4) the computational burden of 0045-7906/$ see front matter 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.compeleceng.2004.05.002 * Corresponding author. Tel.: +1 519 661 2111x88320; fax: +1 519 85

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Recursive Least Squares to Efficient Blunder Detection in Linear Models

In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...

متن کامل

A novel variable-length sliding window blockwise least-squares algorithm for on-line estimation of time-varying parameters

Motivated by the advances in computer technology and the fact that the batch/block least-squares (LS) produces more accurate parameter estimates than its recursive counterparts, several important issues associated with the block LS have been re-examined in the framework of on-line identification of systems with abrupt/gradual change parameters in this paper. It is no surprise that the standard ...

متن کامل

Systolic Algorithms for Recursive Total Least Squares Parameter Estimation and Mixed RLS/RTLS Problems

Total least squares parameter estimation is an alternative to least squares estimation though much less used in practice, partly due to the absence of eecient recursive algorithms or parallel architectures. Here it is shown how previously developed systolic algorithms/architectures for recursive least squares estimation can be used for recursive total least squares problems. Unconstrained as we...

متن کامل

Improving adaptive resolution of analog to digital converters using least squares mean method

This paper presents an adaptive digital resolution improvement method for extrapolating and recursive analog-to-digital converters (ADCs). The presented adaptively enhanced ADC (AE-ADC) digitally estimates the digital equivalent of the input signal by utilizing an adaptive digital filter (ADF). The least mean squares (LMS) algorithm also determines the coefficients of the ADF block. In this sch...

متن کامل

Fault Detection and Identification Using Parameter Estimation Techniques

This paper focuses on the use of parameter estimation techniques for the implementation of real-time Fault Detection and Diagnosis schemes. A detailed analysis of the nonrecursive and recursive Least Squares methods is given in the context of the system diagnosis problem, and a procedure for performing fault detection and identification for multivariable systems is proposed. An application exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Electrical Engineering

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2004